後述の表の "動作" の欄のエントリーは各シグナルのデフォルトの 処理方法を示しており、以下のような意味を持つ。
プロセスは、 sigaction(2) や signal(2) を使って、シグナルの処理方法を変更することができる (signal(2) の方がシグナルハンドラーを設定する際の移植性が低い; 詳細は signal(2) を参照)。 シグナルの配送時に起こる動作として プロセスが選択できるのは、次のいずれか一つである。 デフォルトの動作を実行する、シグナルを無視する、 シグナルハンドラー (signal handler) でシグナルを捕捉する。シグナルハンドラーとは、シグナル配送時に 自動的に起動されるプログラマ定義の関数である。
デフォルトでは、シグナルハンドラーは通常のプロセスのスタック上で起動される。 シグナルハンドラーが代替スタック (alternate stack) を使用するように設定する こともできる。代替スタックを使用するように設定する方法と、どのような際に 代替スタックが役に立つかについての議論については sigaltstack(2) を参照のこと。
シグナルの処理方法はプロセス単位の属性である。 マルチスレッドのアプリケーションでは、あるシグナルの処理方法は 全てのスレッドで同じである。
fork(2) 経由で作成された子プロセスは、親プロセスのシグナルの処理方法の コピーを継承する。 execve(2) の前後で、ハンドラーが設定されているシグナルの処理方法はデフォルトにリセットされ、 無視が設定されているシグナルの処理方法は変更されずそのままとなる。
プロセス内の各スレッドは、それぞれ独立な シグナルマスク (signal mask) を持つ。シグナルマスクはそのスレッドが現在ブロックしている シグナル集合を示すものである。 スレッドは、 pthread_sigmask(3) を使って自分のシグナルマスクを操作できる。 伝統的なシングルスレッドのアプリケーションでは、 sigprocmask(2) を使って、シグナルマスクを操作できる。
fork(2) 経由で作成された子プロセスは親プロセスのシグナルマスクのコピーを継承する。 execve(2) の前後でシグナルマスクは保持される。
A signal may be process-directed or thread-directed. A process-directed signal is one that is targeted at (and thus pending for) the process as a whole. A signal may be process-directed because it was generated by the kernel for reasons other than a hardware exception, or because it was sent using kill(2) or sigqueue(3). A thread-directed signal is one that is targeted at a specific thread. A signal may be thread-directed because it was generated as a consequence of executing a specific machine-language instruction that triggered a hardware exception (e.g., SIGSEGV for an invalid memory access, or SIGFPE for a math error), or because it was targeted at a specific thread using interfaces such as tgkill(2) or pthread_kill(3).
A process-directed signal may be delivered to any one of the threads that does not currently have the signal blocked. If more than one of the threads has the signal unblocked, then the kernel chooses an arbitrary thread to which to deliver the signal.
スレッドは、 sigpending(2) を使って、現在処理待ちのシグナル集合を取得することができる。 この集合は、プロセス宛ての処理待ちシグナルと 呼び出したスレッド宛てのシグナルの両方から構成される。
fork(2) 経由で作成された子プロセスでは、処理待ちのシグナル集合は空の集合で初期化される。 execve(2) の前後で、処理待ちのシグナル集合は保持される。
Note that if the signal handler does not return (e.g., control is transferred out of the handler using siglongjmp(3), or the handler executes a new program with execve(2)), then the final step is not performed. In particular, in such scenarios it is the programmer's responsibility to restore the state of the signal mask (using sigprocmask(2)), if it is desired to unblock the signals that were blocked on entry to the signal handler. (Note that siglongjmp(3) may or may not restore the signal mask, depending on the savesigs value that was specified in the corresponding call to sigsetjmp(3).)
From the kernel's point of view, execution of the signal handler code is exactly the same as the execution of any other user-space code. That is to say, the kernel does not record any special state information indicating that the thread is currently excuting inside a signal handler. All necessary state information is maintained in user-space registers and the user-space stack. The depth to which nested signal handlers may be invoked is thus limited only by the user-space stack (and sensible software design!).
シグナル | 標準 | 動作 | コメント |
|
|
|
|
SIGALRM | P1990 | Term | alarm(2) からのタイマーシグナル |
SIGBUS | P2001 | Core | バスエラー (不正なメモリーアクセス) |
SIGCHLD | P1990 | Ign | 子プロセスの一時停止 (stop) または終了 |
SIGCLD | - | Ign | SIGCHLD と同義 |
SIGCONT | P1990 | Cont | 一時停止 (stop) からの再開 |
SIGEMT | - | Term | Emulator trap |
SIGFPE | P1990 | Core | 浮動小数点例外 |
SIGHUP | P1990 | Term | 制御端末(controlling terminal)のハングアップ検出、 |
または制御しているプロセスの死 |
|||
SIGILL | P1990 | Core | 不正な命令 |
SIGINFO | - | SIGPWR と同義 |
|
SIGINT | P1990 | Term | キーボードからの割り込み (Interrupt) |
SIGIO | - | Term | 入出力が可能になった (4.2BSD) |
SIGIOT | - | Core | IOT トラップ。 SIGABRT と同義 |
SIGKILL | P1990 | Term | Kill シグナル |
SIGLOST | - | Term | ファイルロックが失われた (未使用) |
SIGPIPE | P1990 | Term | パイプ破壊: |
readers; see pipe(7) |
|||
SIGPOLL | P2001 | Term | ポーリング可能なイベント (Sys V); |
SIGIO と同義 |
|||
SIGPROF | P2001 | Term | profiling タイマーの時間切れ |
SIGPWR | - | Term | 電源喪失 (Power failure) (System V) |
SIGQUIT | P1990 | Core | キーボードによる中止 (Quit) |
SIGSEGV | P1990 | Core | 不正なメモリー参照 |
SIGSTKFLT | - | Term | 数値演算プロセッサにおけるスタックフォルト (未使用) |
SIGSTOP | P1990 | Stop | プロセスの一時停止 (stop) |
SIGTSTP | P1990 | Stop | 端末より入力された一時停止 (stop) |
SIGSYS | P2001 | Core | Bad system call (SVr4); |
see also seccomp(2) |
|||
SIGTERM | P1990 | Term | 終了 (termination) シグナル |
SIGTRAP | P2001 | Core | トレース/ブレークポイント トラップ |
SIGTTIN | P1990 | Stop | バックグランドプロセスの端末入力 |
SIGTTOU | P1990 | Stop | バックグランドプロセスの端末出力 |
SIGUNUSED | - | Core | SIGSYS と同義 |
SIGURG | P2001 | Ign | ソケットの緊急事態 (urgent condition) (4.2BSD) |
SIGUSR1 | P1990 | Term | ユーザー定義シグナル 1 |
SIGUSR2 | P1990 | Term | ユーザー定義シグナル 2 |
SIGVTALRM | P2001 | Term | 仮想アラームクロック (4.2BSD) |
SIGXCPU | P2001 | Core | CPU時間制限超過 (4.2BSD); |
see setrlimit(2) |
|||
SIGXFSZ | P2001 | Core | ファイルサイズ制限の超過 (4.2BSD); |
see setrlimit(2) |
|||
SIGWINCH | - | Ign | ウィンドウ リサイズ シグナル (4.3BSD, Sun) |
シグナル SIGKILL と SIGSTOP はキャッチ、ブロック、無視できない。
Linux 2.2 以前では、 SIGSYS, SIGXCPU, SIGXFSZ および SPARC と MIPS 以外のアーキテクチャーでの SIGBUS のデフォルトの振る舞いは (コアダンプ出力なしの) プロセス終了であった。 (他の UNIX システムにも SIGXCPU と SIGXFSZ のデフォルトの動作がコアダンプなしのプロセス終了のものがある。) Linux 2.4 では、POSIX.1-2001 での要求仕様に準拠して、 これらのシグナルで、プロセスを終了させ、コアダンプを出力する ようになっている。
SIGEMT は POSIX.1-2001 に規定されていないが、 その他の多くの UNIX システムに存在する。 デフォルトの動作は多くの場合、コアダンプ出力を伴うプロセスの終了である。
SIGPWR は (POSIX.1-2001 に規定されていないが) このシグナルが存在する 他の UNIX システムでは多くの場合、デフォルト動作は無視である。
SIGIO は (POSIX.1-2001 に規定されていないが) いくつかの他の UNIX システムでは デフォルト動作は無視である。
Standard signals do not queue. If multiple instances of a standard signal are generated while that signal is blocked, then only one instance of the signal is marked as pending (and the signal will be delivered just once when it is unblocked). In the case where a standard signal is already pending, the siginfo_t structure (see sigaction(2)) associated with that signal is not overwritten on arrival of subsequent instances of the same signal. Thus, the process will receive the information associated with the first instance of the signal.
シグナル | x86/ARM | Alpha/ | MIPS | PARISC | Notes |
most others | SPARC | ||||
|
|
|
|
|
|
SIGINT | 2 | 2 | 2 | 2 | |
SIGQUIT | 3 | 3 | 3 | 3 | |
SIGILL | 4 | 4 | 4 | 4 | |
SIGTRAP | 5 | 5 | 5 | 5 | |
SIGABRT | 6 | 6 | 6 | 6 | |
SIGIOT | 6 | 6 | 6 | 6 | |
SIGBUS | 7 | 10 | 10 | 10 | |
SIGEMT | - | 7 | 7 | - | |
SIGFPE | 8 | 8 | 8 | 8 | |
SIGKILL | 9 | 9 | 9 | 9 | |
SIGUSR1 | 10 | 30 | 16 | 16 | |
SIGSEGV | 11 | 11 | 11 | 11 | |
SIGUSR2 | 12 | 31 | 17 | 17 | |
SIGPIPE | 13 | 13 | 13 | 13 | |
SIGALRM | 14 | 14 | 14 | 14 | |
SIGTERM | 15 | 15 | 15 | 15 | |
SIGSTKFLT | 16 | - | - | 7 | |
SIGCHLD | 17 | 20 | 18 | 18 | |
SIGCLD | - | - | 18 | - | |
SIGCONT | 18 | 19 | 25 | 26 | |
SIGSTOP | 19 | 17 | 23 | 24 | |
SIGTSTP | 20 | 18 | 24 | 25 | |
SIGTTIN | 21 | 21 | 26 | 27 | |
SIGTTOU | 22 | 22 | 27 | 28 | |
SIGURG | 23 | 16 | 21 | 29 | |
SIGXCPU | 24 | 24 | 30 | 12 | |
SIGXFSZ | 25 | 25 | 31 | 30 | |
SIGVTALRM | 26 | 26 | 28 | 20 | |
SIGPROF | 27 | 27 | 29 | 21 | |
SIGWINCH | 28 | 28 | 20 | 23 | |
SIGIO | 29 | 23 | 22 | 22 | |
SIGPOLL | Same as SIGIO |
||||
SIGPWR | 30 | 29/- | 19 | 19 | |
SIGINFO | - | 29/- | - | - | |
SIGLOST | - | -/29 | - | - | |
SIGSYS | 31 | 12 | 12 | 31 | |
SIGUNUSED | 31 | - | - | 31 |
Note the following:
The Linux kernel supports a range of 33 different real-time signals, numbered 32 to 64. However, the glibc POSIX threads implementation internally uses two (for NPTL) or three (for LinuxThreads) real-time signals (see pthreads(7)), and adjusts the value of SIGRTMIN suitably (to 34 or 35). Because the range of available real-time signals varies according to the glibc threading implementation (and this variation can occur at run time according to the available kernel and glibc), and indeed the range of real-time signals varies across UNIX systems, programs should never refer to real-time signals using hard-coded numbers, but instead should always refer to real-time signals using the notation SIGRTMIN+n, and include suitable (run-time) checks that SIGRTMIN+n does not exceed SIGRTMAX.
標準シグナルと異なり、リアルタイムシグナルには 事前に定義された意味はない。 リアルタイムシグナルの全部をアプリケーションで定義した用途に使える。
ハンドリングしないリアルタイムシグナルのデフォルトの動作は 受信したプロセスの終了である。
リアルタイムシグナルは以下の特徴がある:
一つのプロセスに対して標準シグナルとリアルタイムシグナルの両方が 処理待ちの場合、POSIX はどちらが先に配送されるかを規定していない。 Linux では、他の多くの実装と同様、このような場合には 標準シグナルが優先される。
POSIX によれば、1 プロセス毎に最低 _POSIX_SIGQUEUE_MAX (32) 個のリアルタイムシグナルをキューに入れられるべきとしている。 しかし、 Linux では違った実装になっている。カーネル 2.6.7 までは (2.6.7 を含む)、全プロセスでキューに入っているリアルタイムシグナル の数の合計についてシステム全体での制限がある。 この制限は /proc/sys/kernel/rtsig-max ファイルで見ることができ、 (権限があれば) 変更もできる。 関係するファイルとして、 /proc/sys/kernel/rtsig-nr を見ることで、いくつのリアルタイムシグナルが現在キューに入っているかを 知ることができる。 Linux 2.6.8 で、これらの /proc 経由のインターフェースは、 RLIMIT_SIGPENDING リソース制限に置き換えられた。 これは、キューに入るシグナル数に関してユーザー単位に 上限を指定するものである。 詳しくは setrlimit(2) を参照。
The addition of real-time signals required the widening of the signal set structure (sigset_t) from 32 to 64 bits. Consequently, various system calls were superseded by new system calls that supported the larger signal sets. The old and new system calls are as follows:
Linux 2.0 and earlier | Linux 2.2 and later |
sigaction(2) | rt_sigaction(2) |
sigpending(2) | rt_sigpending(2) |
sigprocmask(2) | rt_sigprocmask(2) |
sigreturn(2) | rt_sigreturn(2) |
sigsuspend(2) | rt_sigsuspend(2) |
sigtimedwait(2) | rt_sigtimedwait(2) |
これらの二つの挙動のうちどちらが起こるかは、インターフェイスにより依存し、 シグナルハンドラーが SA_RESTART フラグ (sigaction(2) 参照) を使って設定されていたかにも依存する。 詳細は UNIX システムによって異なる。 Linux における詳細を以下で説明する。
If a blocked call to one of the following interfaces is interrupted by a signal handler, then the call is automatically restarted after the signal handler returns if the SA_RESTART flag was used; otherwise the call fails with the error EINTR:
以下のインターフェイスは、 SA_RESTART を使っているどうかに関わらず、シグナルハンドラーにより割り込まれた後、 再スタートすることは決してない。 これらは、シグナルハンドラーにより割り込まれると、常にエラー EINTR で失敗する。
sleep(3) 関数も、ハンドラーにより割り込まれた場合、決して再スタートされることはない。 しかし、成功となり、残っている停止時間を返す。
この挙動を示す Linux のインターフェイスは以下の通りである。
The /proc/[pid]/task/[tid]/status file contains various fields that show the signals that a thread is blocking (SigBlk), catching (SigCgt), or ignoring (SigIgn). (The set of signals that are caught or ignored will be the same across all threads in a process.) Other fields show the set of pending signals that are directed to the thread (SigPnd) as well as the set of pending signals that are directed to the process as a whole (ShdPnd). The corresponding fields in /proc/[pid]/status show the information for the main thread. See proc(5) for further details.
For example, an invalid memory access that causes delivery of SIGSEGV on one CPU architecture may cause delivery of SIGBUS on another architecture, or vice versa.
For another example, using the x86 int instruction with a forbidden argument (any number other than 3 or 128) causes delivery of SIGSEGV, even though SIGILL would make more sense, because of how the CPU reports the forbidden operation to the kernel.
[man1]
[man2]
[man3]
[man4]
[man5]
[man6]
[man7]
[man8]
[a]
[b]
[c]
[d]
[e]
[f]
[g]
[h]
[i]
[j]
[k]
[l]
[m]
[n]
[o]
[p]
[q]
[r]
[s]
[t]
[u]
[v]
[w]
[x]
[y]
[z]