クエリを作成する

一度 データモデル を作成すれば、Django はデータオブジェクトの作成、取得、更新および削除を行えるようにデータベースを抽象化した API を自動的に提供します。本ドキュメントではこの API をどのように用いるかを説明します。多様なモデル探索オプション全てに関する詳細については データモデルの項目 を参照ください。

Throughout this guide (and in the reference), we'll refer to the following models, which comprise a blog application:

from datetime import date

from django.db import models

class Blog(models.Model):
    name = models.CharField(max_length=100)
    tagline = models.TextField()

    def __str__(self):
        return self.name

class Author(models.Model):
    name = models.CharField(max_length=200)
    email = models.EmailField()

    def __str__(self):
        return self.name

class Entry(models.Model):
    blog = models.ForeignKey(Blog, on_delete=models.CASCADE)
    headline = models.CharField(max_length=255)
    body_text = models.TextField()
    pub_date = models.DateField()
    mod_date = models.DateField(default=date.today)
    authors = models.ManyToManyField(Author)
    number_of_comments = models.IntegerField(default=0)
    number_of_pingbacks = models.IntegerField(default=0)
    rating = models.IntegerField(default=5)

    def __str__(self):
        return self.headline

オブジェクトを作成する

データベースのテーブル上のデータを Python オブジェクトに対応付けるため、 Django は直観的なシステムを利用しています: 1 つのモデルクラスが 1 つのデータベーステーブルに対応し、そのモデルクラスの 1 インスタンスが対応するデータベーステーブルの特定のレコードに対応します。

オブジェクトを生成するためには、作成するモデルのクラスにキーワード引数を渡してインスタンス化し、そのデータをデータベースに保存するために save() を呼び出します。

モデル定義が mysite/blog/models.py というファイル内に存在すると仮定すると、利用例は以下のようになります:

>>> from blog.models import Blog
>>> b = Blog(name='Beatles Blog', tagline='All the latest Beatles news.')
>>> b.save()

この例では内部で INSERT SQL 文が処理されます。明示的に save() を呼ぶまで Django はデータベースを操作しません。

save() メソッドは値を返しません。

参考

save() はここには記述されていない多数の高度なオプションを持ちます。詳細については save() の項目を参照してください。

オブジェクトの作成と保存を一つの処理で行うには、 create() メソッドを利用してください。

オブジェクトに対する変更を保存する

既にデータベース上に存在する 1 つのオブジェクトに対する変更を保存するには、 save() を利用します。

既にデータベースに保存されている Blog のインスタンスとして b5 が与えられたとして、次の例ではその name を変更してデータベースのレコードを更新します:

>>> b5.name = 'New name'
>>> b5.save()

この例では内部で UPDATE SQL 文が処理されます。明示的に save() が呼ばれるまで Django はデータベースを操作しません。

ForeignKeyManyToManyField フィールドを扱う

Updating a ForeignKey field works exactly the same way as saving a normal field -- assign an object of the right type to the field in question. This example updates the blog attribute of an Entry instance entry, assuming appropriate instances of Entry and Blog are already saved to the database (so we can retrieve them below):

>>> from blog.models import Blog, Entry
>>> entry = Entry.objects.get(pk=1)
>>> cheese_blog = Blog.objects.get(name="Cheddar Talk")
>>> entry.blog = cheese_blog
>>> entry.save()

ManyToManyField に対する更新は通常のフィールド更新とは少々異なっています -- リレーションのためレコードを追加するには add() メソッドを対象となるフィールドに対して用います。以下の例では entry オブジェクトに Author のインスタンス joe を追加します。

>>> from blog.models import Author
>>> joe = Author.objects.create(name="Joe")
>>> entry.authors.add(joe)

ManyToManyField に対して複数のレコードを一度に追加するには、add() 呼び出し時に複数の引数を次の例のように含めます:

>>> john = Author.objects.create(name="John")
>>> paul = Author.objects.create(name="Paul")
>>> george = Author.objects.create(name="George")
>>> ringo = Author.objects.create(name="Ringo")
>>> entry.authors.add(john, paul, george, ringo)

もし間違った型のオブジェクトを設定もしくは追加しようとすれば Django はエラーを発生させます。

オブジェクトを取得する

データベースからオブジェクトを取得するには、モデルクラスの Manager から QuerySet を作ります。

QuerySet はデータベース上のオブジェクトの集合を表しています。多数の フィルター を持つことができます。フィルターは与えられたパラメータに基づいてクエリの検索結果を絞り込みます。SQL 文においては、 QuerySetSELECT 句、フィルターは WHERELIMIT のような絞り込みに用いる句に対応しています。

モデルの Manager を用いることで QuerySet を取得します。各モデルは少なくとも一つの Manager を持ち、デフォルトでは objects という名前を持ちます。以下のようにモデルクラスから直接アクセスしてください。

>>> Blog.objects
<django.db.models.manager.Manager object at ...>
>>> b = Blog(name='Foo', tagline='Bar')
>>> b.objects
Traceback:
    ...
AttributeError: "Manager isn't accessible via Blog instances."

注釈

Manager はモデルのインスタンスでなく、モデルのクラスを経由してのみアクセスでき、それは "テーブル水準" の処理と "レコード水準" の処理とで責任を明確に分離するためです。

Manager はモデルの QuerySet の主な取得元になります。たとえば、 Blog.objects.all() はデータベース内の Blog オブジェクト全てを含んだ QuerySet を返します。

すべてのオブジェクトを取得する

テーブルからオブジェクトを取得する方法で最も簡単なのは、すべてのオブジェクトを取得することです。それには Manager に対して all() メソッドを呼びます。

>>> all_entries = Entry.objects.all()

all() メソッドは、データベース内のすべてのオブジェクトを含んだ QuerySet を返します。

フィルタを用いて特定のオブジェクトを取得する

all() が返す QuerySet には、データベーステーブルのすべてのオブジェクトが含まれています。しかし、ふつう必要になるのはオブジェクト全体の集合ではなく、その部分集合でしょう。

そのような部分集合を作るには、条件フィルタを追加して最初の QuerySet を絞り込みます。 QuerySet を絞り込む代表的な方法として次の2つのものがあります。

filter(**kwargs)
与えられた検索パラメータにマッチする新しい QuerySet を返します。
exclude(**kwargs)
与えられた検索パラメータにマッチ しない 新しい QuerySet を返します。

検索パラメータ (上の関数定義における **kwargs ) は、以下の Field lookups で説明するフォーマットに従わなければなりません。

たとえば、2006年以降のブログエントリーの QuerySet を取得するには、 filter() を次のように使用します。

Entry.objects.filter(pub_date__year=2006)

デフォルトの manager クラスの場合、これは次のコードと等価です。

Entry.objects.all().filter(pub_date__year=2006)

フィルターのチェーン

絞り込みを行った QuerySet の結果自体も QuerySet です。そのため、複数の絞り込みをチェーンすることが可能です。たとえば、次のように書くことができます。

>>> Entry.objects.filter(
...     headline__startswith='What'
... ).exclude(
...     pub_date__gte=datetime.date.today()
... ).filter(
...     pub_date__gte=datetime.date(2005, 1, 30)
... )

これはデータベース内のすべてのエントリーを含む QuerySet をとり、フィルターを追加し、除外フィルターを追加し、さらにもう1つのフィルターを追加しています。最終的な結果は、"What" で始まるヘッドラインを持ち、2005年1月30日から今日までに公開されたすべてのエントリーを含んだ QuerySet となります。

フィルターを適用した QuerySet はユニーク

QuerySet に対して絞り込みを適用するごとに、前の QuerySet から独立した完全に新しい QuerySet が作られます。絞り込みごとに独立した QuerySet が作られるため、保存したり何度も再利用したりできます。

実装例:

>>> q1 = Entry.objects.filter(headline__startswith="What")
>>> q2 = q1.exclude(pub_date__gte=datetime.date.today())
>>> q3 = q1.filter(pub_date__gte=datetime.date.today())

これら3つの QuerySets は独立しています。1番目は基本の QuerySet で、"What" で始まるヘッドラインを持つ全てのエントリーを含みます。2番めは1番目の部分集合で、 pub_date が今日または未来の日付であるレコードを除外する追加条件を持ちます。3番目も1番目の部分集合で、 pub_date が今日または未来の日付であるレコードだけを選択する追加条件を持ちます。1番目の QuerySet (q1) は、絞り込みの過程において何ら影響を受けません。

QuerySet は遅延評価される

QuerySets は遅延評価されます。 QuerySet を作る行為はいかなるデータベース操作も引き起こしません。たとえあなたが 1 日中フィルターのスタックを積み上げたとしても、QuerySet評価される までは、Django は実際にはクエリを実行しません。次の例を見てください。

>>> q = Entry.objects.filter(headline__startswith="What")
>>> q = q.filter(pub_date__lte=datetime.date.today())
>>> q = q.exclude(body_text__icontains="food")
>>> print(q)

この例ではデータベースに3回アクセスしているように見えますが、実際にアクセスしているのは、最終行 (print(q)) での1回だけです。一般に、 QuerySet の結果は、明示的に要求するまでデータベースから取得されません。取得するように要求した時点で、 QuerySet評価 され、データベースへのアクセスが発生します。評価が起こる正確なタイミングの詳細については、 When QuerySets are evaluated を参照してください。

get() を用いて1つのオブジェクトを取得する

filter() は、たとえクエリーにマッチしたのが1つのオブジェクトだけだったとしても、常に QuerySet を返します。この場合、 QuerySet には1つの要素だけが含まれることになります。

クエリーにマッチするのは1つのオブジェクトだけだと分かっている場合、 Managerget() メソッドを呼べば、そのオブジェクトが直接返されます。

>>> one_entry = Entry.objects.get(pk=1)

filter() と同じように、 get() には任意のクエリー表現が使用できます。 繰り返しますが、詳しくはあとで説明する Field lookups を見てください。

get()filter()[0] でスライスすることには、次のような違いがあることに注意してください。クエリにマッチする結果が存在しない場合、 get()DoesNotExist 例外を起こします。この例外はクエリーが実行されるモデルクラスの属性です。たとえば上のコードでは、1というプライマリーキーを持つ Entry オブジェクトがなければ、Django は Entry.DoesNotExist 例外を起こします。

同様に get() のクエリーが2つ以上のアイテムにマッチした場合にも、Djangoは文句を言います。この場合には、やはり同じクエリのモデルクラスの属性の MultipleObjectsReturned 例外が起こります。

その他の QuerySet メソッド

データベースからオブジェクトを検索する必要がある大抵の場合は、 all(), get(), filter() および exclude() のいずれかを使うことになるでしょう。しかしこれらのメソッドだけでは不十分な場合は、さまざまな QuerySet メソッドの全リストが掲載されている QuerySet API Reference を参照してください。

QuerySet の要素数を制限する

Python のリストスライスのサブセットを使うことで QuerySet の結果を特定の要素数に制限することができます。これは SQL の LIMITOFFSET 句に対応します。

たとえば、次のコードは最初の5つのオブジェクトを返します (LIMIT 5)。

>>> Entry.objects.all()[:5]

次のコードは、6番目から10番目までのオブジェクトを返します (OFFSET 5 LIMIT 5)。

>>> Entry.objects.all()[5:10]

負のインデックスには対応していません (例: Entry.objects.all()[-1])。

一般に、 QuerySet をスライスしたとしても、新しい QuerySet が返り、クエリーの評価は行われません。例外は、Python のリストスライス構文の "step" パラメーターを使用した場合です。たとえば、次のコードは実際にクエリを実行し、最初の10個のオブジェクトから一つおきにとったオブジェクトのリストを返します。

>>> Entry.objects.all()[:10:2]

Further filtering or ordering of a sliced queryset is prohibited due to the ambiguous nature of how that might work.

To retrieve a single object rather than a list (e.g. SELECT foo FROM bar LIMIT 1), use an index instead of a slice. For example, this returns the first Entry in the database, after ordering entries alphabetically by headline:

>>> Entry.objects.order_by('headline')[0]

上の例は次のコードとほとんど同じです。

>>> Entry.objects.order_by('headline')[0:1].get()

ただし、与えられた条件を満たすオブジェクトが存在しない場合に、前者は IndexError を起こすのに対して、後者は DoesNotExist を起こすことに注意してください。詳細については get() を参照してください。

フィールドルックアップ

フィールドルックアップは、SQL の WHERE 句の内容を指定する手段です。 QuerySet メソッド、 filter()exclude() および get() にキーワード引数として指定します。

基本のルックアップキーワード引数は field__lookuptype=value という形を取ります (2文字連続するアンダースコアです)。たとえば、

>>> Entry.objects.filter(pub_date__lte='2006-01-01')

というコードは、(だいたい) 次の SQL 文に変換されます。

SELECT * FROM blog_entry WHERE pub_date <= '2006-01-01';

動作のしくみ

Python には任意の name-value 形式の引数をとる関数を定義する能力があり、name と value の値を実行時に評価します。詳しい情報については、公式の Python チュートリアルを参照してください。

ルックアップに指定するフィールドはモデルが持つフィールド名でなければなりません。ただし1つだけ例外があり、 ForeignKey の場合にはフィールド名の末尾に _id を付けた名前を指定することができます。その場合、value パラメータには外部モデルのプライマリーキーの生の値を書くことが期待されます。

>>> Entry.objects.filter(blog_id=4)

無効なキーワード引数を指定すると、ルックアップ関数は TypeError を起こします。

データベース API は約30個のルックアップタイプをサポートしており、完全なガイドは field lookup reference で見ることができます。ルックアップを使って何ができるのかがよく分かるように、以下によく使う一般的なルックアップをいくつか挙げます。

exact

完全な ("exact") マッチを行います。たとえば、

>>> Entry.objects.get(headline__exact="Cat bites dog")

は次のような SQL を生成します。

SELECT ... WHERE headline = 'Cat bites dog';

ルックアップタイプを指定しなかった場合、つまりキーワード引数がダブルアンダースコアを含まない場合、ルックアップタイプは exact が指定されたものとみなされます。

たとえば、次の2つの文は等価です。

>>> Blog.objects.get(id__exact=14)  # Explicit form
>>> Blog.objects.get(id=14)         # __exact is implied

exact ルックアップが最もよく使われるため、利便性のためにこのようになっています。

iexact

case-insensitive なマッチを行います。したがって、次のクエリ

>>> Blog.objects.get(name__iexact="beatles blog")

"Beatles Blog""beatles blog" 、あるいは "BeAtlES blOG" というタイトルを持つ Blog にもマッチします。

contains

case-sensitive な部分一致テストを行います。たとえば、

Entry.objects.get(headline__contains='Lennon')

はだいたい次のような SQL に変換されます。

SELECT ... WHERE headline LIKE '%Lennon%';

この例では、ヘッドライン 'Today Lennon honored' にはマッチしても 'today lennon honored' にはマッチしないことに注意してください。

case-insensitive バージョンの icontains もあります。

startswithendswith
それぞれ starts-with と ends-with 検索を行います。case-insensitive バージョン istartswithiendswith もあります。

繰り返しになりますが、以上はルックアップの表面をさらったに過ぎません。完全なリファレンスは field lookup reference を参照してください。

リレーションを横断するルックアップ

Django offers a powerful and intuitive way to "follow" relationships in lookups, taking care of the SQL JOINs for you automatically, behind the scenes. To span a relationship, use the field name of related fields across models, separated by double underscores, until you get to the field you want.

次の例は、name'Beatles Blog' を持つ Blog のすべての Entry オブジェクトを取得します。

>>> Entry.objects.filter(blog__name='Beatles Blog')

この横断は好きなだけ深くすることができます。

It works backwards, too. While it can be customized, by default you refer to a "reverse" relationship in a lookup using the lowercase name of the model.

次の例は、 少なくとも1つの headline'Lennon' を含む Entry を持つ、すべての Blog オブジェクトを取得します。

>>> Blog.objects.filter(entry__headline__contains='Lennon')

複数のリレーションにまたがってフィルタリングをしていて、仲介するどれかが条件に合致しない場合、Django は空 (すべての値が NULL) だけど有効なオブジェクトとして扱います これが意味するのは、エラーが投げられないと言うことです。例えば、以下のフィルタでは:

Blog.objects.filter(entry__authors__name='Lennon')

(関係づけられた Author モデルがあった場合で) entry に関係づけられた author がない場合、 name がなかったかのように扱われ、author がないという理由でエラーを投げることはありません。通常、これは必要とされる動作です。もし混乱するとしたら、isnull を使っている場合でしょう。なので:

Blog.objects.filter(entry__authors__name__isnull=True)

これは author に空の name を持つ Blog オブジェクトと entry に空の author を返します。後者のオブジェクトがほしくない場合、以下のように書くことができます:

Blog.objects.filter(entry__authors__isnull=False, entry__authors__name__isnull=True)

複数の値を持つリレーションの横断

When spanning a ManyToManyField or a reverse ForeignKey (such as from Blog to Entry), filtering on multiple attributes raises the question of whether to require each attribute to coincide in the same related object. We might seek blogs that have an entry from 2008 with “Lennon” in its headline, or we might seek blogs that merely have any entry from 2008 as well as some newer or older entry with “Lennon” in its headline.

To select all blogs containing at least one entry from 2008 having "Lennon" in its headline (the same entry satisfying both conditions), we would write:

Blog.objects.filter(entry__headline__contains='Lennon', entry__pub_date__year=2008)

Otherwise, to perform a more permissive query selecting any blogs with merely some entry with "Lennon" in its headline and some entry from 2008, we would write:

Blog.objects.filter(entry__headline__contains='Lennon').filter(entry__pub_date__year=2008)

Suppose there is only one blog that has both entries containing "Lennon" and entries from 2008, but that none of the entries from 2008 contained "Lennon". The first query would not return any blogs, but the second query would return that one blog. (This is because the entries selected by the second filter may or may not be the same as the entries in the first filter. We are filtering the Blog items with each filter statement, not the Entry items.) In short, if each condition needs to match the same related object, then each should be contained in a single filter() call.

注釈

As the second (more permissive) query chains multiple filters, it performs multiple joins to the primary model, potentially yielding duplicates.

>>> from datetime import date
>>> beatles = Blog.objects.create(name='Beatles Blog')
>>> pop = Blog.objects.create(name='Pop Music Blog')
>>> Entry.objects.create(
...     blog=beatles,
...     headline='New Lennon Biography',
...     pub_date=date(2008, 6, 1),
... )
<Entry: New Lennon Biography>
>>> Entry.objects.create(
...     blog=beatles,
...     headline='New Lennon Biography in Paperback',
...     pub_date=date(2009, 6, 1),
... )
<Entry: New Lennon Biography in Paperback>
>>> Entry.objects.create(
...     blog=pop,
...     headline='Best Albums of 2008',
...     pub_date=date(2008, 12, 15),
... )
<Entry: Best Albums of 2008>
>>> Entry.objects.create(
...     blog=pop,
...     headline='Lennon Would Have Loved Hip Hop',
...     pub_date=date(2020, 4, 1),
... )
<Entry: Lennon Would Have Loved Hip Hop>
>>> Blog.objects.filter(
...     entry__headline__contains='Lennon',
...     entry__pub_date__year=2008,
... )
<QuerySet [<Blog: Beatles Blog>]>
>>> Blog.objects.filter(
...     entry__headline__contains='Lennon',
... ).filter(
...     entry__pub_date__year=2008,
... )
<QuerySet [<Blog: Beatles Blog>, <Blog: Beatles Blog>, <Blog: Pop Music Blog]>

注釈

The behavior of filter() for queries that span multi-value relationships, as described above, is not implemented equivalently for exclude(). Instead, the conditions in a single exclude() call will not necessarily refer to the same item.

For example, the following query would exclude blogs that contain both entries with "Lennon" in the headline and entries published in 2008:

Blog.objects.exclude(
    entry__headline__contains='Lennon',
    entry__pub_date__year=2008,
)

However, unlike the behavior when using filter(), this will not limit blogs based on entries that satisfy both conditions. In order to do that, i.e. to select all blogs that do not contain entries published with "Lennon" that were published in 2008, you need to make two queries:

Blog.objects.exclude(
    entry__in=Entry.objects.filter(
        headline__contains='Lennon',
        pub_date__year=2008,
    ),
)

フィルターはモデルのフィールドを参照できる

今まで見てきた例では、モデルのフィールドの値を定数と比較するフィルタを作ってきました。しかし、もしモデルのフィールドの値を、同じモデルの他のフィールドと比較したい時にはどうすればいいのでしょう?

そのような比較を行うために、Django は F を用意しています。 F() のインスタンスは、クエリの中でモデルのフィールドへの参照として振る舞います。したがって、この参照をクエリの中で使うことで、同じモデルのインスタンスの異なる2つのフィールドの値を比較することができます。

たとえば、pingback の数よりコメントの数が多いすべてのブログエントリーのリストを検索するには、pingback の数を参照する F() オブジェクトを作り、その F() オブジェクトをクエリの中で次のように使います。

>>> from django.db.models import F
>>> Entry.objects.filter(number_of_comments__gt=F('number_of_pingbacks'))

Django supports the use of addition, subtraction, multiplication, division, modulo, and power arithmetic with F() objects, both with constants and with other F() objects. To find all the blog entries with more than twice as many comments as pingbacks, we modify the query:

>>> Entry.objects.filter(number_of_comments__gt=F('number_of_pingbacks') * 2)

To find all the entries where the rating of the entry is less than the sum of the pingback count and comment count, we would issue the query:

>>> Entry.objects.filter(rating__lt=F('number_of_comments') + F('number_of_pingbacks'))

You can also use the double underscore notation to span relationships in an F() object. An F() object with a double underscore will introduce any joins needed to access the related object. For example, to retrieve all the entries where the author's name is the same as the blog name, we could issue the query:

>>> Entry.objects.filter(authors__name=F('blog__name'))

For date and date/time fields, you can add or subtract a timedelta object. The following would return all entries that were modified more than 3 days after they were published:

>>> from datetime import timedelta
>>> Entry.objects.filter(mod_date__gt=F('pub_date') + timedelta(days=3))

The F() objects support bitwise operations by .bitand(), .bitor(), .bitxor(), .bitrightshift(), and .bitleftshift(). For example:

>>> F('somefield').bitand(16)

Oracle

Oracle doesn't support bitwise XOR operation.

Expressions can reference transforms

New in Django 3.2.

Django supports using transforms in expressions.

For example, to find all Entry objects published in the same year as they were last modified:

>>> Entry.objects.filter(pub_date__year=F('mod_date__year'))

To find the earliest year an entry was published, we can issue the query:

>>> Entry.objects.aggregate(first_published_year=Min('pub_date__year'))

This example finds the value of the highest rated entry and the total number of comments on all entries for each year:

>>> Entry.objects.values('pub_date__year').annotate(
...     top_rating=Subquery(
...         Entry.objects.filter(
...             pub_date__year=OuterRef('pub_date__year'),
...         ).order_by('-rating').values('rating')[:1]
...     ),
...     total_comments=Sum('number_of_comments'),
... )

pk ルックアップショートカット

利便性のために、Django は pk ルックアップショートカットを用意しています。pk とは "primary key" を表します。

プライマリーキーが id フィールドである Blog モデルの例では、次の3つの文はすべて等価です。

>>> Blog.objects.get(id__exact=14) # Explicit form
>>> Blog.objects.get(id=14) # __exact is implied
>>> Blog.objects.get(pk=14) # pk implies id__exact

The use of pk isn't limited to __exact queries -- any query term can be combined with pk to perform a query on the primary key of a model:

# Get blogs entries with id 1, 4 and 7
>>> Blog.objects.filter(pk__in=[1,4,7])

# Get all blog entries with id > 14
>>> Blog.objects.filter(pk__gt=14)

pk lookups also work across joins. For example, these three statements are equivalent:

>>> Entry.objects.filter(blog__id__exact=3) # Explicit form
>>> Entry.objects.filter(blog__id=3)        # __exact is implied
>>> Entry.objects.filter(blog__pk=3)        # __pk implies __id__exact

LIKE 文の中ではパーセント記号とアンダースコアがエスケープされる

The field lookups that equate to LIKE SQL statements (iexact, contains, icontains, startswith, istartswith, endswith and iendswith) will automatically escape the two special characters used in LIKE statements -- the percent sign and the underscore. (In a LIKE statement, the percent sign signifies a multiple-character wildcard and the underscore signifies a single-character wildcard.)

This means things should work intuitively, so the abstraction doesn't leak. For example, to retrieve all the entries that contain a percent sign, use the percent sign as any other character:

>>> Entry.objects.filter(headline__contains='%')

Django takes care of the quoting for you; the resulting SQL will look something like this:

SELECT ... WHERE headline LIKE '%\%%';

Same goes for underscores. Both percentage signs and underscores are handled for you transparently.

キャッシングと QuerySet

それぞれの QuerySet には、データベースへのアクセスを最小にするために内部にキャッシュがあります。キャッシュのしくみを理解すれば、最も効率の良いコードが書けるようになります。

In a newly created QuerySet, the cache is empty. The first time a QuerySet is evaluated -- and, hence, a database query happens -- Django saves the query results in the QuerySet’s cache and returns the results that have been explicitly requested (e.g., the next element, if the QuerySet is being iterated over). Subsequent evaluations of the QuerySet reuse the cached results.

Keep this caching behavior in mind, because it may bite you if you don't use your QuerySets correctly. For example, the following will create two QuerySets, evaluate them, and throw them away:

>>> print([e.headline for e in Entry.objects.all()])
>>> print([e.pub_date for e in Entry.objects.all()])

That means the same database query will be executed twice, effectively doubling your database load. Also, there's a possibility the two lists may not include the same database records, because an Entry may have been added or deleted in the split second between the two requests.

To avoid this problem, save the QuerySet and reuse it:

>>> queryset = Entry.objects.all()
>>> print([p.headline for p in queryset]) # Evaluate the query set.
>>> print([p.pub_date for p in queryset]) # Re-use the cache from the evaluation.

QuerySet がキャッシュされない場合

Querysets do not always cache their results. When evaluating only part of the queryset, the cache is checked, but if it is not populated then the items returned by the subsequent query are not cached. Specifically, this means that limiting the queryset using an array slice or an index will not populate the cache.

For example, repeatedly getting a certain index in a queryset object will query the database each time:

>>> queryset = Entry.objects.all()
>>> print(queryset[5]) # Queries the database
>>> print(queryset[5]) # Queries the database again

However, if the entire queryset has already been evaluated, the cache will be checked instead:

>>> queryset = Entry.objects.all()
>>> [entry for entry in queryset] # Queries the database
>>> print(queryset[5]) # Uses cache
>>> print(queryset[5]) # Uses cache

Here are some examples of other actions that will result in the entire queryset being evaluated and therefore populate the cache:

>>> [entry for entry in queryset]
>>> bool(queryset)
>>> entry in queryset
>>> list(queryset)

注釈

Simply printing the queryset will not populate the cache. This is because the call to __repr__() only returns a slice of the entire queryset.

Querying JSONField

Lookups implementation is different in JSONField, mainly due to the existence of key transformations. To demonstrate, we will use the following example model:

from django.db import models

class Dog(models.Model):
    name = models.CharField(max_length=200)
    data = models.JSONField(null=True)

    def __str__(self):
        return self.name

Storing and querying for None

As with other fields, storing None as the field's value will store it as SQL NULL. While not recommended, it is possible to store JSON scalar null instead of SQL NULL by using Value('null').

Whichever of the values is stored, when retrieved from the database, the Python representation of the JSON scalar null is the same as SQL NULL, i.e. None. Therefore, it can be hard to distinguish between them.

This only applies to None as the top-level value of the field. If None is inside a list or dict, it will always be interpreted as JSON null.

When querying, None value will always be interpreted as JSON null. To query for SQL NULL, use isnull:

>>> Dog.objects.create(name='Max', data=None)  # SQL NULL.
<Dog: Max>
>>> Dog.objects.create(name='Archie', data=Value('null'))  # JSON null.
<Dog: Archie>
>>> Dog.objects.filter(data=None)
<QuerySet [<Dog: Archie>]>
>>> Dog.objects.filter(data=Value('null'))
<QuerySet [<Dog: Archie>]>
>>> Dog.objects.filter(data__isnull=True)
<QuerySet [<Dog: Max>]>
>>> Dog.objects.filter(data__isnull=False)
<QuerySet [<Dog: Archie>]>

Unless you are sure you wish to work with SQL NULL values, consider setting null=False and providing a suitable default for empty values, such as default=dict.

注釈

Storing JSON scalar null does not violate null=False.

Key, index, and path transforms

To query based on a given dictionary key, use that key as the lookup name:

>>> Dog.objects.create(name='Rufus', data={
...     'breed': 'labrador',
...     'owner': {
...         'name': 'Bob',
...         'other_pets': [{
...             'name': 'Fishy',
...         }],
...     },
... })
<Dog: Rufus>
>>> Dog.objects.create(name='Meg', data={'breed': 'collie', 'owner': None})
<Dog: Meg>
>>> Dog.objects.filter(data__breed='collie')
<QuerySet [<Dog: Meg>]>

Multiple keys can be chained together to form a path lookup:

>>> Dog.objects.filter(data__owner__name='Bob')
<QuerySet [<Dog: Rufus>]>

If the key is an integer, it will be interpreted as an index transform in an array:

>>> Dog.objects.filter(data__owner__other_pets__0__name='Fishy')
<QuerySet [<Dog: Rufus>]>

If the key you wish to query by clashes with the name of another lookup, use the contains lookup instead.

To query for missing keys, use the isnull lookup:

>>> Dog.objects.create(name='Shep', data={'breed': 'collie'})
<Dog: Shep>
>>> Dog.objects.filter(data__owner__isnull=True)
<QuerySet [<Dog: Shep>]>

注釈

The lookup examples given above implicitly use the exact lookup. Key, index, and path transforms can also be chained with: icontains, endswith, iendswith, iexact, regex, iregex, startswith, istartswith, lt, lte, gt, and gte, as well as with Containment and key lookups.

注釈

Due to the way in which key-path queries work, exclude() and filter() are not guaranteed to produce exhaustive sets. If you want to include objects that do not have the path, add the isnull lookup.

警告

Since any string could be a key in a JSON object, any lookup other than those listed below will be interpreted as a key lookup. No errors are raised. Be extra careful for typing mistakes, and always check your queries work as you intend.

MariaDB and Oracle users

Using order_by() on key, index, or path transforms will sort the objects using the string representation of the values. This is because MariaDB and Oracle Database do not provide a function that converts JSON values into their equivalent SQL values.

Oracle users

On Oracle Database, using None as the lookup value in an exclude() query will return objects that do not have null as the value at the given path, including objects that do not have the path. On other database backends, the query will return objects that have the path and the value is not null.

PostgreSQL users

On PostgreSQL, if only one key or index is used, the SQL operator -> is used. If multiple operators are used then the #> operator is used.

Containment and key lookups

contains

The contains lookup is overridden on JSONField. The returned objects are those where the given dict of key-value pairs are all contained in the top-level of the field. For example:

>>> Dog.objects.create(name='Rufus', data={'breed': 'labrador', 'owner': 'Bob'})
<Dog: Rufus>
>>> Dog.objects.create(name='Meg', data={'breed': 'collie', 'owner': 'Bob'})
<Dog: Meg>
>>> Dog.objects.create(name='Fred', data={})
<Dog: Fred>
>>> Dog.objects.filter(data__contains={'owner': 'Bob'})
<QuerySet [<Dog: Rufus>, <Dog: Meg>]>
>>> Dog.objects.filter(data__contains={'breed': 'collie'})
<QuerySet [<Dog: Meg>]>

Oracle and SQLite

contains is not supported on Oracle and SQLite.

contained_by

This is the inverse of the contains lookup - the objects returned will be those where the key-value pairs on the object are a subset of those in the value passed. For example:

>>> Dog.objects.create(name='Rufus', data={'breed': 'labrador', 'owner': 'Bob'})
<Dog: Rufus>
>>> Dog.objects.create(name='Meg', data={'breed': 'collie', 'owner': 'Bob'})
<Dog: Meg>
>>> Dog.objects.create(name='Fred', data={})
<Dog: Fred>
>>> Dog.objects.filter(data__contained_by={'breed': 'collie', 'owner': 'Bob'})
<QuerySet [<Dog: Meg>, <Dog: Fred>]>
>>> Dog.objects.filter(data__contained_by={'breed': 'collie'})
<QuerySet [<Dog: Fred>]>

Oracle and SQLite

contained_by is not supported on Oracle and SQLite.

has_key

Returns objects where the given key is in the top-level of the data. For example:

>>> Dog.objects.create(name='Rufus', data={'breed': 'labrador'})
<Dog: Rufus>
>>> Dog.objects.create(name='Meg', data={'breed': 'collie', 'owner': 'Bob'})
<Dog: Meg>
>>> Dog.objects.filter(data__has_key='owner')
<QuerySet [<Dog: Meg>]>

has_keys

Returns objects where all of the given keys are in the top-level of the data. For example:

>>> Dog.objects.create(name='Rufus', data={'breed': 'labrador'})
<Dog: Rufus>
>>> Dog.objects.create(name='Meg', data={'breed': 'collie', 'owner': 'Bob'})
<Dog: Meg>
>>> Dog.objects.filter(data__has_keys=['breed', 'owner'])
<QuerySet [<Dog: Meg>]>

has_any_keys

Returns objects where any of the given keys are in the top-level of the data. For example:

>>> Dog.objects.create(name='Rufus', data={'breed': 'labrador'})
<Dog: Rufus>
>>> Dog.objects.create(name='Meg', data={'owner': 'Bob'})
<Dog: Meg>
>>> Dog.objects.filter(data__has_any_keys=['owner', 'breed'])
<QuerySet [<Dog: Rufus>, <Dog: Meg>]>

Q オブジェクトを用いた複雑な検索

Keyword argument queries -- in filter(), etc. -- are "AND"ed together. If you need to execute more complex queries (for example, queries with OR statements), you can use Q objects.

A Q object (django.db.models.Q) is an object used to encapsulate a collection of keyword arguments. These keyword arguments are specified as in "Field lookups" above.

たとえば、次の Q オブジェクトは、1つの LIKE クエリをカプセル化しています。

from django.db.models import Q
Q(question__startswith='What')

Q オブジェクトは &| 演算子を使って結合することができます。2つの Q オブジェクトに演算子が作用すると、1つの新しい Q オブジェクトが生まれます。

たとえば、次の文は2つの "question__startswith" の "OR" を表す、1つの Q オブジェクトを生み出します。

Q(question__startswith='Who') | Q(question__startswith='What')

このコードは次の SQL の WHERE 句と同等です。

WHERE question LIKE 'Who%' OR question LIKE 'What%'

You can compose statements of arbitrary complexity by combining Q objects with the & and | operators and use parenthetical grouping. Also, Q objects can be negated using the ~ operator, allowing for combined lookups that combine both a normal query and a negated (NOT) query:

Q(question__startswith='Who') | ~Q(pub_date__year=2005)

Each lookup function that takes keyword-arguments (e.g. filter(), exclude(), get()) can also be passed one or more Q objects as positional (not-named) arguments. If you provide multiple Q object arguments to a lookup function, the arguments will be "AND"ed together. For example:

Poll.objects.get(
    Q(question__startswith='Who'),
    Q(pub_date=date(2005, 5, 2)) | Q(pub_date=date(2005, 5, 6))
)

... roughly translates into the SQL:

SELECT * from polls WHERE question LIKE 'Who%'
    AND (pub_date = '2005-05-02' OR pub_date = '2005-05-06')

Lookup functions can mix the use of Q objects and keyword arguments. All arguments provided to a lookup function (be they keyword arguments or Q objects) are "AND"ed together. However, if a Q object is provided, it must precede the definition of any keyword arguments. For example:

Poll.objects.get(
    Q(pub_date=date(2005, 5, 2)) | Q(pub_date=date(2005, 5, 6)),
    question__startswith='Who',
)

... would be a valid query, equivalent to the previous example; but:

# INVALID QUERY
Poll.objects.get(
    question__startswith='Who',
    Q(pub_date=date(2005, 5, 2)) | Q(pub_date=date(2005, 5, 6))
)

... would not be valid.

参考

The OR lookups examples in Django's unit tests show some possible uses of Q.

オブジェクトを比較する

To compare two model instances, use the standard Python comparison operator, the double equals sign: ==. Behind the scenes, that compares the primary key values of two models.

上記の例の Entry を使用すると、以下の 2 つの命令文は同一となります:

>>> some_entry == other_entry
>>> some_entry.id == other_entry.id

モデルのプライマリキーが id 以外の場合でも問題ありません。どのフィールドが使われていようとも、比較には常にプライマリキーが使われます。例えば、モデルのプライマリキーが name の場合、以下の 2 つの命令文は同一となります:

>>> some_obj == other_obj
>>> some_obj.name == other_obj.name

オブジェクトを削除する

削除のメソッドは、便利なことに delete() という名前がつけられています。このメソッドはオブジェクトを即座に削除して、削除したオブジェクトの数とオブジェクトのタイプごとの削除数を表すディクショナリを返します。例えば:

>>> e.delete()
(1, {'blog.Entry': 1})

オブジェクトを一括で削除することもできます。すべての QuerySetdelete() メソッドを持っており、その QuerySet のすべてのメンバーを削除します。

例えば、以下は pub_date が 2005 年のすべての Entry オブジェクトを削除します:

>>> Entry.objects.filter(pub_date__year=2005).delete()
(5, {'webapp.Entry': 5})

注意してほしいのは、この処理は可能な場合には純粋に SQL で実行され、個別のオブジェクトインスタンスの delete() メソッドはプロセス中に呼ぶ必要はないということです。モデルクラスで独自の delete() メソッドを定義していて確実に呼び出されるようにしたい場合、QuerySet で一括の delete() を使用するのではなく、そのモデルのインスタンスを "手動で" 削除する必要があります (例えば、QuerySet を繰り返し処理し、各オブジェクトで個別に delete() を呼び出します)。

Django がオブジェクトを削除するとき、デフォルトでは SQL の制限 ON DELETE CASCADE の動作をエミュレートします -- 言い換えると、削除するオブジェクトを指している外部キーを持つすべてのオブジェクトは、ともに削除されることになります。例えば:

b = Blog.objects.get(pk=1)
# This will delete the Blog and all of its Entry objects.
b.delete()

このカスケードの動作は、ForeignKey に対する on_delete 属性によってカスタマイズできます。

delete() は、Manager で露出していない唯一の QuerySet のメソッドです。これは、Entry.objects.delete() を誤ってリクエストして すべての entry を削除してしまうことを防ぐ安全上の仕組みです。すべてのオブジェクトを削除 したい 場合、明示的に完全なクエリセットをリクエストする必要があります:

Entry.objects.all().delete()

モデルのインスタンスを複製する

Although there is no built-in method for copying model instances, it is possible to easily create new instance with all fields' values copied. In the simplest case, you can set pk to None and _state.adding to True. Using our blog example:

blog = Blog(name='My blog', tagline='Blogging is easy')
blog.save() # blog.pk == 1

blog.pk = None
blog._state.adding = True
blog.save() # blog.pk == 2

継承を使用している場合、物事は少し複雑になります。Blog のサブクラスを考えると:

class ThemeBlog(Blog):
    theme = models.CharField(max_length=200)

django_blog = ThemeBlog(name='Django', tagline='Django is easy', theme='python')
django_blog.save() # django_blog.pk == 3

Due to how inheritance works, you have to set both pk and id to None, and _state.adding to True:

django_blog.pk = None
django_blog.id = None
django_blog._state.adding = True
django_blog.save() # django_blog.pk == 4

この処理では、モデルのデータベーステーブルの一部ではないリレーションは複製しません。例えば、EntryAuthor への ManyToManyField を持ちます。entry の複製後、新しい entry に対して多対多のリレーションをセットする必要があります:

entry = Entry.objects.all()[0] # some previous entry
old_authors = entry.authors.all()
entry.pk = None
entry._state.adding = True
entry.save()
entry.authors.set(old_authors)

OneToOneField については、1 対 1 のユニーク制限への違反を避けるため、関係オブジェクトを複製して新しいオブジェクトのフィールドに割り当てる必要があります。例えば、entry が上記のようにすでに複製されているものとすると:

detail = EntryDetail.objects.all()[0]
detail.pk = None
detail._state.adding = True
detail.entry = entry
detail.save()

複数のオブジェクトを一括で更新する

QuerySet のすべてのオブジェクトに、特定の値をセットしたい場合があります。update() を使えば実現できます。例えば:

# Update all the headlines with pub_date in 2007.
Entry.objects.filter(pub_date__year=2007).update(headline='Everything is the same')

このメソッドを使ってセットできるのは非リレーションのフィールドと ForeignKey フィールドだけです。非リレーションのフィールドを更新するには、定数として新しい値を渡してください。ForeignKey フィールドを更新するには、関係づけたい新しいモデルインスタンスを新しい値にセットしてください。例えば:

>>> b = Blog.objects.get(pk=1)

# Change every Entry so that it belongs to this Blog.
>>> Entry.objects.all().update(blog=b)

update() は即座に適用され、クエリに一致した行数を返します (行のいくつかはすでに新しい値を持っていることがあるので、更新された行の数と一致するとは限りません)。更新する QuerySet の唯一の制限は、1 つのデータベーステーブル (モデルのメインテーブル) にしかアクセスできないことです。関係フィールドでフィルタすることもできますが、モデルのメインテーブルのカラムしか更新できません。例えば:

>>> b = Blog.objects.get(pk=1)

# Update all the headlines belonging to this Blog.
>>> Entry.objects.filter(blog=b).update(headline='Everything is the same')

Be aware that the update() method is converted directly to an SQL statement. It is a bulk operation for direct updates. It doesn't run any save() methods on your models, or emit the pre_save or post_save signals (which are a consequence of calling save()), or honor the auto_now field option. If you want to save every item in a QuerySet and make sure that the save() method is called on each instance, you don't need any special function to handle that. Loop over them and call save():

for item in my_queryset:
    item.save()

更新の呼び出しでは、F を使ってモデル内の別のフィールドの値に基づいてフィールドを更新することもできます。これは、現在値に基づいてカウンタを増加させる場合に特に有用です。例えば、ブログの各 entry のpingback カウントを増加させるには:

>>> Entry.objects.all().update(number_of_pingbacks=F('number_of_pingbacks') + 1)

しかし、filter および exclude 節での F() オブジェクトとは異なり、更新で F() オブジェクトを使うときには join を導入することはできません -- できるのは、更新されるモデルに関係付いたフィールドを参照することだけです。 F() オブジェクトで join の導入を試みた場合、FieldError が投げられます:

# This will raise a FieldError
>>> Entry.objects.update(headline=F('blog__name'))

素の SQL にフォールバックする

Django のデータベースマッパが扱うには複雑すぎる SQL クエリを記述する必要がある場合、手書きで SQL を書くことができます。Django には、素の SQL クエリを記述するための方法がいくつかあります; 素の SQL 文の実行 を参照してください。

最後に、覚えておいてほしい重要な点は、Django のデータベースレイヤはあなたのデータベースに対する単なるインターフェースでしかないということです。あなたは、他のツール、プログラミング言語、データベースフレームワークなどを通じてデータベースを操作することもできます; データベースに関して Django 特有のことは何もありません。